Year 1 Fractions

How can we progress with fractions?
Recognise, find and name a half as one of two equal parts of an object, shape or quantity.

Concrete

Find and name a quarter as four equal parts of an object, shape or quantity

Concrete

Pictorial

A whole apple

Half an apple

Abstract

Abstract
A quarter of $20=$
A quarter of $12=$

$\frac{1}{4}$ of $8=$ \square

Year 2 Fractions

How can we progress with fractions?
Recognise, find and name and write fractions $1 / 3,1 / 4,2 / 4$ and $3 / 4$ of a length, shape, set of objects or quantity.

Concrete

Pictorial

Abstract

Abstract

Year 3 Fractions

How can we progress with fractions?
Count up and down in tenths: recognise that tenths arise from dividing an object into ten equal parts and in dividing one-digit numbers or quantities by ten.

Concrete

Pictorial

Abstract
$\frac{1}{10}$ of $6=0.6$
because
$6 \div 10=0.6$
$\frac{1}{10}$ of $7=0.7$
$7 \div 10=0.7$

Recognise, find and write fractions of a discrete set of objects: unit fractions and nonunit fractions and use fractions as numbers.

Abstract

$\frac{1}{5} \quad$ of 15 sweets $=3$
Because $15 \div 5=3$

$$
\frac{2}{5} \text { of } 15 \text { sweets }=6
$$

Recognise and show, using diagrams, equivalent fractions with small denominators.

Concrete

two halves
$\frac{2}{2}$

four quarters
$\frac{4}{4}$

$\frac{1}{2}$

Pictorial

$\frac{2}{4}$

$\frac{3}{6}$

Abstract

Sam says that two quarters is the same as one half.

Is he correct?
How do you know?

Add and subtract fractions with the same denominator.

Concrete

Pictorial

Compare and order unit fractions with the same denominator

Pictorial

Abstract

Year 4 Fractions

How can we progress with fractions?
Count up and down in hundredths: recognise that hundredths arise when dividing an object by 100 and dividing tenths by 10.

Concrete

Pictorial

Abstract

$$
\begin{gathered}
\frac{1}{100} \text { of } 60=0.6 \\
\text { because } 60 \div 100=0.6 \\
\frac{1}{10} \text { of } 70=0.7 \\
\text { so } \frac{1}{100} \text { of } 70=0.07
\end{gathered}
$$

Abstrac \dagger

$$
\begin{aligned}
& \frac{1}{2}=0.5 \\
& \frac{1}{4}=0.25 \\
& \frac{3}{4}=0.75
\end{aligned}
$$

Recognise and write decimal equivalents of any number of tenths or hundredths.

Concrete

Pictorial

six tenths

0.60
sixty hundredths

Abstrac \dagger

$$
\begin{gathered}
\frac{1}{10}=0.1 \\
\frac{3}{10}=0.3 \\
\frac{5}{10}=\frac{1}{2}=0.5 \\
\frac{8}{100}=0.08
\end{gathered}
$$

Recognise and show using diagrams families of common equivalents

Concrete

Pictorial

Abstract

$$
\begin{aligned}
& \frac{2}{3}=\frac{4}{6} \\
& \frac{3}{5}=\frac{6}{10} \\
& \frac{2}{12}=\frac{1}{6}
\end{aligned}
$$

Add and subtract fractions with the same denominator

Pictorial

Sam eats $\frac{2}{7}$ of a whole pizza. How much does Lucy and Ben both eat $\frac{3}{8}$ of a cake. How much have they eat en altogether?

Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number.

Concrete

Pictorial

Abstract

$$
\frac{2}{3} \text { of } £ 18
$$

$$
£ 18 \div 3=£ 6
$$

$$
£ 6 \times 2=£ 12
$$

Solve simple measure and money problems involving fractions and decimals to two decimal places

Concrete

Pictorial

Abstract

$$
100 \mathrm{~cm}=1 \mathrm{~m}
$$

$$
50 \mathrm{~cm}=\frac{1}{2}=0.5 \mathrm{~m}
$$

$$
25 \mathrm{~cm}=\frac{1}{4}=0.25 \mathrm{~m}
$$

$$
10 \mathrm{~cm}=\frac{1}{10}=0.1 \mathrm{~m}
$$

$$
30 \mathrm{~cm}=\frac{3}{10}=0.3 \mathrm{~m}
$$

Year 5 Fractions

How can we progress with fractions?
Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths.

Concrete

Pictorial

Abstract

$$
\begin{gathered}
\frac{3}{5}=\frac{6}{10}=\frac{60}{100} \\
\frac{3}{4}=\frac{75}{100} \\
\frac{1}{5}=\frac{2}{10}=\frac{20}{100}
\end{gathered}
$$

Compare and order fractions whose denominators are all multiples of the same number.

Concrete

has become
$\frac{8}{20}$

has become
$\frac{5}{20}$

Pictorial

Abstrac \dagger

Recognise mixed numbers and improper fractions. Convert from one form to the other and write mathematical statements >1 as a mixed number.

Add and subtract fractions with the same denominators and denominators that are multiples of the same numbers.

Concrete

Pictorial

$\frac{8}{20}+$	$\frac{5}{20}$	$=$	$\frac{13}{20}$
$\frac{2}{5}+\frac{1}{4}$	$=$	$\frac{13}{20}$	

Abstrac \dagger

$$
\frac{2}{5}-\frac{1}{4}
$$

	$\frac{8}{20}$	-	$\frac{5}{20}$
So,	$=$	$\frac{3}{20}$	
	$\frac{2}{5}$	-	$\frac{1}{4}$
	$=$	$\frac{3}{20}$	

Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams.

Concrete
Pictorial

Abstract

Multiply a proper fraction by a whole number:

$$
\frac{3}{4} \times 6=\frac{18}{4}
$$

Change to a mixed number:
$4 \frac{2}{4}$ Altogether

$$
\frac{18}{4}=4 \frac{2}{4}
$$

Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents.

Concrete

Pictorial

Abstrac \dagger
67.153

How many thousandths does this number have? How many more thousandths do you need to add to make 67.16?

Recognise \% symbol and understand the meaning: write \% as a fraction, decimal and percentage.

$$
\begin{gathered}
\text { Abstract } \\
\frac{4}{10}=40 \%=0.4 \\
\frac{32}{100}=32 \%=0.32 \\
\frac{75}{100}=75 \%=0.75 \\
\frac{2}{25}=\frac{8}{100}=8 \%=0.08
\end{gathered}
$$

Year 6 Fractions

How can we progress with fractions?
Add and subtract fractions with different denominators and mixed numbers using the concept of equivalent fractions.

Compare and order fractions including fractions >1

Pictorial

Ordering from smallest to largest by using equivalent fractions:

$$
\frac{5}{12}, \frac{2}{3}, \frac{5}{6}
$$

$$
\frac{5}{12}, \frac{8}{12}, \frac{10}{12}
$$

Use common factors to simplify fractions; use common multiples to express fractions in the same denomination.

Concrete

Pictorial

Abstract

Multiply simple pairs of proper fractions writing the answer in its simplest form.

Concrete $\frac{1}{2}$ of $\frac{3}{4}$

Pictorial
$\frac{1}{2}$ of $\frac{3}{4}$

Abstract

$$
\frac{1}{2} \times \frac{3}{4}=\frac{3}{8}
$$

(1) multiply the

Recall and use equivalences between simple fractions, decimals and percentages including in different contexts.

Concrete

Pictorial
Which would you prefer 75% or $\frac{3}{8}$ of a pie?

75%

$\frac{3}{8}$

Abstract

John scored $\frac{40}{80}$ in his spelling test and Hannah scored 40%. Who scored more?

$$
\text { John }=\frac{40}{80}=50 \%
$$

Hannah = 40\%

One paving slab is 0.3 m long and another
is $\frac{1}{4}$ of a metre. Which is longer?

$$
=0.25 \mathrm{~m}
$$

0.3 m is larger than 0.25 m

4

Divide proper fractions by whole numbers.

Concrete

Pictorial

$$
\frac{1}{2} \div 3=\frac{1}{6}
$$

Abstract

$$
\frac{1}{2} \div 3=\frac{1}{6}
$$

Keep it, change it, flip it!

$$
\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}
$$

Associate fractions with division and calculate decimal fraction equivalents.

Concrete

Pictorial
3 slices of pie 'out of' 8

$\frac{3}{8}$

Abstract
$\frac{3}{8}$
3 'out of' 8 is the same as 3 'divided by' 8
$3 \div 8=0.375$

$$
\text { So } \frac{3}{8}=0.375
$$

